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The equations to be solved in order to determine the best discrete-valued

approximation to a given electron or scattering-length density function are

worked out. A simple illustration is reported.

The theory of small-angle scattering (SAS) of X-rays and

neutrons (Guinier & Fournet, 1955; Glatter & Kratky, 1982;

Feigin & Svergun, 1987; Kostorz, 1996) is based on the

assumption that n�r�, the electron or the scattering-length

density [simply referred to in the following as scattering

density (function)] of the sample under analysis can fairly be

approximated by a discrete-valued function denoted by nD�r�
(Debye et al., 1957; Porod, 1951; Ciccariello et al., 1988).

However, to the author's knowledge, the procedure able to

determine nD�r� from n�r�, assumed to be known, was nowhere

discussed. The aim of this note is to ®ll this gap in the simplest

case of samples idealized as consisting of two homogeneous

phases. In this case, nD�r� takes only two values, respectively

denoted by n1 and n2. The hypothetical sample with scattering

density nD�r� will be called the Debye idealized sample.

Denote by V1 and V2 the collection of the regions of the

Debye sample where nD�r� is equal to n1 and to n2, respec-

tively. The two regions are fully determined by their set

characteristic functions �1�r� and �2�r�. It is recalled that �j�r�
(with j � 1; 2) is de®ned as being equal to one if the tip of the

position vector r lies inside V j and equal to zero elsewhere.

Denoting the set characteristic function of the sample by �V�r�,
one ®nds that

�1�r� � �2�r� � �V�r� �1�

and

nD�r� � n1�1�r� � n2�2�r� � �n�1�r� � n2�V�r�; �2�

where �n � �n1 ÿ n2� is the scattering contrast between the

two phases constituting the Debye sample.

It appears natural to require that the best discrete-valued

approximation of n�r� is the function nD�r� which makes the

integral

I � R
V

jn�r� ÿ nD�r�j2 dv �3�

smallest. [The integral in (3) is performed throughout the

sample volume denoted by V.] Recalling that �D�r� �
�n�r� ÿ nD�r�� represents the microscopic ¯uctuation of the

density of the given sample in comparison to that of the Debye

one, then I represents the squared L2 norm of �D�r�. Thus,

minimizing I amounts to making �D�r� smallest in norm.1

To show how to get the equations that determine the best

nD�r�, consider ®rst the simplest case where the idealized

sample consists of a smooth, convex and homogeneous

particle that is immersed in a homogeneous medium. This

implies that the particle surface, denoted by �, does not

present edges and corner points and that each segment having

its two ends on � has the remaining points inside the particle.

Let rG denote the position vector of the centre of gravity of the

particle and consider a new Cartesian frame O0x0y0z0, having

the origin at the particle's centre of gravity, so as to have

r � rG � r0: �4�

The particle's set characteristic function, with respect to the

O0x0y0z0 frame, will be denoted as �p�r0�. It is related to �1�r� by

the relation

�p�r0� � �1�r0 � rG�: �5�

Using polar coordinates �r0; �0; '0� and putting r̂0 �
�cos�'0� sin �0; sin�'0� sin �0; cos �0�, we have r0 � r0r̂0. The

convexity assumption implies that, along any direction r̂0,

�p�r0� � �p�r0r̂0� � ��R��0; '0� ÿ r0�; �6�

where � is the Heaviside function and R��0; '0� is the distance

from the origin of the system O0x0y0z0 to the point intersection

of � with the half straight line having direction r̂0 and passing

through O0. The knowledge of R��0; '0�, for any ��0; '0�, fully

determines �p�r0�, i.e. the particle shape, while that of rG

determines the position of the particle in the space. Writing

nD�r� as

nD�r� � �n�1�r� � n2�V�r� � �n�p�rÿ rG� � n2�V�r�; �7�

1 This condition can also be restated by saying that the best nD�r�
minimizes the integral, over reciprocal space, of the scattering intensity
[Imfl�q�] of a hypothetical sample having its scattering density equal to �D�r�. In
fact, denoting the Fourier transform of a function by the same symbol
with a tilde, the Parseval equality allows us to write (3) as I �
�1=2��3 R j ~�D�q�j2 dvq � �1=2��3 R Imfl�q� dvq.



one concludes that nD�r� is fully known once �p�r0�, rG, �n and

n2 have been determined. It remains to be shown how these

quantities can be determined by making I minimum. For this

condition to hold, the derivatives of I with respect to �n, n2,

rG and R��; '� must be equal to zero. To evaluate these

derivatives, it is ®rst observed that (3) can be written by

(4)±(7) as

I � ��n�2V1 � n2
2V � 2n2���n�V1 ÿ Vhni�

� R
V

�n2�r� ÿ 2��n�n�r��1�r�� dv; �8�

where hni is the scattering density average of the real sample,

i.e.

hni � �1=V� R
V

n�r� dv; �9�

and the particle volume V1 as

V1 �
R
�1�r� dv � R R R r02 sin��0���R��0; '0� ÿ r0� dr0 d�0 d'0:

�10�
One similarly shows thatR

n�r��1�r� dv � R R R r02 sin��0�n�rG � r0r̂0��0; '0��
���R��0; '0� ÿ r0� dr0 d�0 d'0; �11�

which is the only contribution on the right-hand side (r.h.s.) of

(8) depending on rG. Then from (8) it follows that

@I=@�n � 2�V1�n� V1n2 ÿ
R

n�r��1�r� dv�; �12a�
@I=@n2 � 2�V1�n� Vn2 ÿ Vhni�; �12b�
@I=@rG;� � ÿ2�n

R R R
r02 sin��0��@n�rG � r0r̂0��0; '0��=@rG;��

���R��0; '0� ÿ r0� dr0 d�0 d'0; �12c�
where rG;� is the �th component (with � � 1; 2; 3) of rG. The

derivative of I with respect to R��; '� is a functional derivative

that is evaluated by using the identity (Hansen & McDonald,

1976)

�R��0; '0�=�R��; '� � ��� ÿ �0���'ÿ '0�;
where the � functions present on the r.h.s. are Dirac functions

and the same rules valid for normal derivatives are applied.

Thus, from (8) it follows that

�I=�R��; '� � ���n�2 � 2n2�n���V1=�R��; '��
ÿ 2�n��R n�r��1�r� dv�=�R��; '�; �12d�

and from (10) and (11), via the reported identity, one gets

�V1=�R��; '� � R2��; '� sin���;
��R n�r��1�r� dv�=�R��; '� � R2��; '�n�rG � R��; '�r̂��; '�� sin���:
Collecting the previous results, one ®nds the equations that

determine the solution of our problem, namely

V1�n� V1n2 �
R

n�r��1�r� dv; �13a�
V1�n� Vn2 � Vhni; �13b�

n�rG � R��; '�r̂��; '�� � ��n� 2n2�=2; �13c�R R R
r02 sin��0�rGn�rG � r0r̂��0; '0����R��0; '0� ÿ r0� dr0 d�0 d'0

� 0: �13d�

Equations (13a)±(13c) can be written in a more compact form.

In fact, after putting

hni1 � �1=V1�
R

n�r��1�r� dv � �1=V1�
R
V1

n�r� dv; �14a�

hni2 � �1=V2�
R

n�r��2�r� dv � �1=V2�
R
V2

n�r� dv; �14b�

using (1) one ®nds that

Vhni � V1hni1 � V2hni2: �14c�
Equations (13a) and (13b), after being solved with respect to

n1 and n2, yield

n1 � hni1 �15a�
n2 � hni2; �15b�

while (13c), owing to (15a) and (15b), takes the form

n�r� � �hni1 � hni2�=2: �15c�
Actually, (15c) [together with de®nitions (14a) and (14b)] is

the equation that determines the best discrete-valued

approximation to n�r�. To show this, it is ®rst remarked that

equations (15a)±(15c) no longer require that the sample be

made up of a single and strictly convex particle. In fact, they

make sense for any two-valued discrete idealization. More-

over, they also apply to one-dimensional (1D) and two-

dimensional (2D) samples, provided integrals (14a) and (14b),

de®ning hni1 and hni2, are interpreted as 1D and 2D integrals.

Second, it is observed that (15a) and (15b) imply that the

values n1 and n2 of the sought for nD�r� solution must be equal

to the mean values of n�r�, respectively evaluated over the

regions V1 and V2 relevant to phases 1 and 2. Finally,

according to (15c), the interface between phases 1 and 2 is the

`surface' where n�r� turns out to be equal to the arithmetic

mean of hni1 and hni2. Thus, (15c) determines the boundaries

of the regions with scattering densities n1 and n2 as well as the

latter values since the boundaries must be such that the mean

values of n�r�, evaluated over the resulting V1 and V2 regions,

must respectively be equal to n1 and n2.2 These considerations

show that the equation that really determines the Debye

sample is (15c). In order to make fully clear how (15c)

determines the best nD�r�, consider the case of a 2D sample so

that n�r� is de®ned on a planar set S with area S. As r ranges

throughout S, the values taken by the continuous function n�r�
will range in an interval denoted by ��m;�M�. Further, the

points �r; n�r�� de®ne a surface with respect to a Cartesian

frame Oxyz such that S lies on the plane z � 0. Consider now

the equation

n�r� � �; �16�
� being a real number such that �m � � � �M . The solution

of (16) in general determines a curve, which will be ®rst

assumed to be a single closed curve, denoted by ÿ���. This
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hnDi � hni so as to have Vh�Di � 0 (Sobry & Ciccariello, 2002).
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curve divides S in two disjoint sets: S1���, the region of S
internal to ÿ���, and S2��� � S n S1���, the remaining

region of S, i.e. the region of S external to ÿ���. For de®-

niteness, assume that n�r�>� for all the vectors r whose tips

lie inside S1���. This region will be identi®ed with the region

where nD�r� � n1, so that �1�r� � 1 if r 2 S1��� and �1�r� � 0

if r 62 S1���. The knowledge of �1�r� implies that of �2�r� by

(1), and hni1 and hni2 can be respectively evaluated by (14a)

and (14b). The resulting values depend on � and will be

denoted as hni1��� and hni2���, respectively. Equation (15c)

requires that their arithmetic mean be equal to �, the value

taken by n�r� on ÿ���. This condition will be satis®ed only

for particular values of �. Thus, the solution of (15c) is

obtained by looking at the intersection(s) of the curve

��; �hni1��� � hni2����=2� with the straight line ��;�� as �
ranges in ��m;�M�. This condition is clearly equivalent to

looking for the solutions of the equation

�hni1��� � hni2����=2ÿ� � 0 �17�

within the range �m � � � �M, having clearly in mind that

the evaluation of hni1��� and hni2��� requires the knowledge

of S1��� and S2��� by solving (16) for each � value in

��m;�M�. Depending on whether an intersection exists or not,

a Debye sample can or cannot be associated to the given

sample. Assuming that the intersection occurs for the value ��

of �, the boundary of the two homogeneous phases is the

curve ÿ� ��� solution of the equation n�r� � ��, while the

scattering densities of the resulting homogeneous phases

S1� ��� and S2� ���, de®ned by ÿ� ���, are hni1� ��� and hni2� ���,
respectively. It could also happen that (17) has more than one

solution. In such a case, the best discrete-valued function is the

solution that yields the minimum value of I.

Whenever the solution of (16) consists of more closed

curves (taking also into account the boundary of the

sample), the separation of S into two disjoint sets S1��� and

S2��� is performed by looking at the regions where n�r�>�
and the regions where n�r�<�. To the ®rst regions will be

assigned the value n1 � hni1���, and to the second the value

n2 � hni2���, with n1 > n2. Each of the regions, forming the

sets S1��� and S2���, is bounded by one or two of the

aforesaid closed curves. Thus, the search of the � value,

solution of (17), proceeds as in the above discussed case,

even though the search of the solution is more complicated

since an accurate book-keeping of all the regions is

required. Finally, the previous considerations immediately

generalize to the three-dimensional (3D) case. From this

analysis, it follows that (15c) fully determines �1�r� and �2�r�
and it becomes evident that the use of (13d) is no longer

necessary. In fact, one can show that, for each particle, (13d)

can be converted into rG � �1=Vp�
R

V r�p�r� dv, i.e. the de®ni-

tion of the position of the centre of gravity of the particle.

A very simple illustration of the aforesaid procedure is

shown in Figs. 1(a) and (b), which respectively illustrate the

results obtained by considering the radially symmetric

density pro®les n�r� � exp�ÿ�r� with 0 � r � jrj � 10 and

n�r� � �1� sin�r��=2 with 0 � r � 3�. In both cases, the radial

symmetry makes it evident that the roots of the equation

n�r� � � are circles or spheres, depending on whether one

considers the 2D or the 3D case, so that the solutions of the

equation n�r� � � yield their radii. For the pro®les of Fig.

1(a), one ®nds that the radius, in terms of �, is ÿ ln���=�. The

evaluation of hni1��� and hni2��� can algebraically be carried

through both in the 2D and in the 3D case, and the resulting

equation (17) is easily solved numerically. In Fig. 1(a), the

continuous lines show the `real' pro®les for � � 0:1, 0.5 and 1

going from the top to the bottom, the dotted lines represent

the pro®les of the corresponding best two-phase idealizations

for the 2D case and, ®nally, the broken line shows the pro®le

of the best two-phase idealization of the real pro®le with

� � 0:1 for the 3D case. For the real pro®le shown in Fig. 1(b),

one ®nds that �m � 0, �M � 1, while the roots of the equa-

tions n�r� � � are r��� � arcsin�2�ÿ 1� �� 2�� and

�ÿ r��� �� 2��. In the two-dimensional case, both S1���
and S2��� consist of circular annuli (reducing to a circle

when the inner radius is zero) with radii equal to the next-

neighbour values among the set of the aforesaid values

(including also the values 0 and 3�), which do not exceed 3�.

Also for this `real' pro®le, the evaluation of hni1��� and

hni2��� is straightforward and the search of the root of (17) is

made by numerically exploring the range 0 � � � 1. The

radial pro®le of the resulting nD�r� is given by the dotted line

in Fig. 1(b). The analysis in the 3D case is quite similar since

Figure 1
(a) The continuous lines show the pro®les of the radially symmetric `real'
scattering density n�r� � exp�ÿ�r� with � � 0:1, 0.5 and 1, from top to
bottom. The dotted lines show the pro®les of the corresponding best
nD�r� for the 2D case, while the broken line is the pro®le of the best two-
phase idealization for � � 0:1 in the 3D case. (b) The continuous line
represents the pro®le of the radial `real' scattering density n�r� �
�1� sin�r��=2. The dotted and the broken curves, almost coinciding,
represent the corresponding Debye approximations obtained by solving
(15c) in the 2D and 3D case, respectively.



S1��� and S2��� consist now of hollow spheres. The corre-

sponding best nD�r� pro®le is given by the broken curve which

is quite close to the dotted one.

Summarizing, the best discrete-valued approximation

nD�r� to a given scattering-density function n�r� is

obtained by solving (15c) and, whenever this equation has

more than one solution, by selecting the solution that makes I
minimum. Even though this result can hardly be useful on

practical grounds because of the mathematical dif®culty of

solving (15c) and, more important, because n�r� is generally

unknown, it is theoretically valuable. In fact, it shows that

nD�r� turns out to be uniquely determined by the condition

that I be minimum (barring the exceptional case of a

degenerate minimum), it gives a procedure for determining

nD�r� and, ®nally, it shows that the idealized interface is made

up of the points where n�r� � �n1 � n2�=2.
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